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Modern cosmology apparently answers many longstanding questions regarding the nature 
of time.  For example, is the universe temporally finite or eternal, and is there a unique 
global sense of time? The Standard Model of cosmology renders the following verdicts.  
The universe is temporally finite, and approximately 13.7 billion years old.  Events in the 
universe can be ordered according to a “cosmic time,” which corresponds to time as 
measured by a particular class of fundamental observers since the “big bang.”  Many 
questions that remain unanswered seem to be answerable by empirical methods, if only in 
principle.  Whether the universe will also be temporally finite to the future can be 
resolved, in principle, by measuring the actual matter and energy density in the universe.  
If it exceeds the so-called critical value, then the universe will be temporally finite to the 
future as well, collapsing back into a “big crunch.”  
 
Taking relativistic cosmology to provide direct answers to such questions is, however, 
misleading in (at least) two different senses.  First, it neglects the extent to which the 
questions have not been so much answered as transformed into, or replaced with, new 
questions.  A similar transformation occurred with regard to the central cosmological 
question of the 16-17th centuries:  does the Sun or the Earth move?  Posing this question 
sufficiently clearly for astronomical evidence to provide a decisive resolution of it 
required reformulating the concepts of space, time, and motion. Similarly, aspects of time 
presumed in posing the questions above pre-theoretically are significantly revised in 
relativistic cosmology.  Second, even taking these conceptual changes into account, the 
answers to the questions are subtler than is usually acknowledged.  The answers 
summarized above hold for a class of particularly simple, idealized cosmological models. 
But in what sense do these answers apply to the real universe?  And in what sense do 
these answers address the initial questions regarding the nature of time?  
 
This essay aims to provide a self-contained introduction to time in relativistic cosmology 
that clarifies both how questions about the nature of time should be posed in this setting 
and the extent to which they have been or can be answered empirically.  The first section 
below recounts the loss of Newtonian absolute time with the advent of special and 
general relativity, and the partial recovery of absolute time in the form of cosmic time in 
some cosmological models.   Section II considers the beginning and end of time in a 
broader class of models in which there is not an analog of Newtonian absolute time.  As 
we will see, reasonable physical assumptions imply that the universe is finite to the past, 
and Section III turns to consideration of the “beginning” itself.  We critically review 
conventional wisdom that a “singularity” reveals flaws in general relativity and briefly 
assess ways of avoiding the singularity. 
 
Overall the first three sections describe how to translate questions about the nature of 
time into the language of the spacetime geometry of cosmological models.  This approach 
to understanding the content of cosmological models is not controversial, although the 
implications for philosophical disputes are more contentious.  The final two sections turn 
to two recent debates, with no pretense of an entirely even-handed survey. First, the 



propriety of attributing geometrical properties to spacetime itself, independently of the 
dynamical behavior of matter within spacetime, has been challenged.  If there is nothing 
that can function as a clock, what does it mean to attribute a temporal length to a curve?  
We will consider the ramifications of this debate for cosmology in Section IV.  The final 
section takes up the source of the asymmetry in our experience of time.  Here I will 
critically review the popular idea that the pervasive temporal asymmetry of our 
experience can be traced to a cosmological asymmetry, in the form of the stipulation that 
the universe “began” in a far-from-equilibrium state.     
 

I. Absolute Time: Lost and (partially) Regained 
 
Reflecting on the implications of Einstein’s special theory of relativity, Minkowski 
famously declared in 1909 that “Henceforth, space by itself, and time by itself, are 
doomed to fade away into mere shadows, and only a kind of union of the two will 
preserve an independent reality” (Lorentz et al. 1952, p. 75).  This shift to a spacetime 
perspective is driven by the fact that the relation of simultaneity is observer-dependent 
rather than absolute, as in earlier theories.  As a result, there is no longer an invariant, 
observer-independent way to decompose Minkowski spacetime, as it is now known, into 
space and time. In the first act of our tale of the evolving concept of time, this spacetime 
perspective emerges from a previous, more intuitive conception of absolute time. 
 
To set the stage, consider how to introduce an appropriate structure to characterize the 
intuitive properties of time.  The structure ought to capture features of time such as 
measurements of the duration of processes and their relative ordering. We will begin by 
defining the structure holding amongst idealized intervals without duration, “points of 
time.” Suppose that we introduce a temporal metric, representing “time elapsed” between 
any two such points.  This gives the “time line” a structure slightly weaker than that of 
the real number line.1 The duration and temporal order of finite temporal intervals are 
then defined in terms of the temporal metric.  
 
Next, consider how to assign time to spatially distant regions. It is intuitively quite 
compelling to suppose that the collection of events (localized spatially as well as 
temporally) can be partitioned into sets of simultaneous events, “instants.”  This will be 
possible if the relation of simultaneity is an equivalence relation (that is, symmetric, 
reflexive, and transitive), as it seems natural to assume.  For a given event, the 
equivalence class under the simultaneity relation includes all the events happening at the 
same time at different spatial locations throughout the universe. The time line is then the 
structure defined on the collection of such “instants.”  Note that we have not done justice 
to one of the most striking features of our experience of time, namely the sense of time’s 
cruel passing as our minutes hasten to their end.  We have not distinguished any “instant” 
from any other, nor have we introduced a partition into past, present, and future.  
 
Newton gave a clear explication of time consistent with this intuitive account in the 
Principia.  But the crucial aspect of Newtonian mechanics that insured compatibility 
between physical theory and this account is precisely what Einstein was forced to modify.  
One of Newton’s achievements was the reconciliation between two apparently conflicting 



ideas in 17th century physics, namely inertia and Galilean relativity.  With the 
introduction of inertia, motion was treated as a state of a body that is changed by a non-
zero net force. The fundamental distinction between a state of motion that is changing 
versus one that is not (that is, between accelerated and inertial motion) should hold for all 
observers.  Yet Galilean relativity introduces a set of observers regarded as physically 
equivalent, called inertial observers, and these observers disagree about quantities like 
spatial position and velocity.2  Evading the conflict requires recognizing that although 
some quantities vary, others do not --- in particular, acceleration is absolute in the sense 
of being observer-independent whereas velocity is not.  In different language, 
acceleration is invariant under the transformations between observers allowed by 
Galilean relativity, the Galilean transformations.  This suffices to draw the appropriate 
physical distinction between inertial and accelerated motion.   
 
For our purposes, the main point is that the Galilean transformations have no impact on 
the relation of simultaneity: inertial observers agree on how to partition spacetime into 
instants.  Newton’s laws of motion presume that the local time parameters appearing in 
the description of spatially separated systems can be combined into a single universal 
time.  Rather than being mere shadows of spacetime, space and time thus have their own 
independent reality in the sense that there is a unique, universal foliation.   
 
This appealing account of time conflicts with ideas introduced in the theory of 
electromagnetism.  Einstein recognized this conflict and argued that Newton’s account 
was not well founded empirically as a result.  In a nutshell, Newton’s approach assumed 
that absolute simultaneity of two events could be established by suitable measurements.  
But in fact measurements of the time elapsed between, for example, two astronomical 
events rely on light signals, with a finite signal speed.  The concept of simultaneity 
appropriate for a theory with a finite, observer-independent maximum signal speed is not 
absolute as in Newton’s theory.  Einstein argued that mechanics should be reformulated 
in terms of the Lorentz transformations discovered in the study of electromagnetism 
rather than the Galilean transformations.  These transformations can be derived by 
requiring that all inertial observers measure the same value for the speed of light.   
 
One consequence of the form of these transformations is that there is no longer a unique 
foliation of spacetime into instants valid for all inertial observers. For an inertial observer 
Alice, for example, spacetime is foliated into a sequence of instants orthogonal to her 
worldline.3 The instants according to a second inertial observer, Bob, moving at some 
velocity with respect to Alice, are tilted (see figure 1). The Lorentz transformation from 
Alice to Bob maps one of Alice’s instants into a distinct set of events that intersects but 
does not overlap it.  As a result, this set of points deemed to be simultaneous according to 
Bob cannot be an equivalence class of Alice’s simultaneity relation.  Rather than an 
absolute or universal simultaneity relation we thus have simultaneity relative to an 
observer; it is only relative to a chosen observer that we recover the foliation of 
spacetime into instants.  More generally, Alice and Bob disagree about the spatial and 
temporal distances between any two events while agreeing on the spacetime distance 
between them.  The universal quantity all observers agree upon is thus spacetime distance 
rather than temporal distance, as in Newtonian physics. We are left with spatial and 



temporal quantities as observer-dependent, pale reflections of universal spacetime 
quantities --- and Minkowksi’s emphasis on the primacy of spacetime. 
 
INSERT FIGURE 1 HERE (SmeenkSimultaneity) 
 

 
 



CAPTION: 
Figure 1:  Alice judges events in the hyperplane 
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S  to be simultaneous with 

! 

O, whereas 
Bob’s surface of simultaneity is 
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" S .  Alice and Bob agree, however, regarding the light 
cone:  the set of events that can be connected to 

! 

O via light signals.  As is conventional 
in spacetime diagrams, one spatial dimension is suppressed and time goes up along the 
vertical axis.  
 
In the second act of this oft-rehearsed tale of the loss of absolute time there is an 
unexpected reversal of fortune.  Einstein’s theory of gravity, general relativity (GR), 
differs from both Newtonian theory and special relativity in describing spacetime 
geometry as variable and dynamical.  In GR, the “gravitational field” is incorporated into 
the spacetime geometry, uniting inertial structure and gravitation in a single inertio-
gravitational field.  What Newton would have described as spatial variation of the 
gravitational field within a fixed background spactime geometry is represented instead as 
a change in the geometry itself.  Just as the gravitational field depends on mass in 
Newton’s theory, in GR the spacetime curvature within a region is related to the stress-
energy present via Einstein’s field equations.4  The trajectory of a body deflected from an 
inertial path by gravity alone, in the language of Newtonian theory, is the straightest path, 
or geodesic, within this curved geometry.5  Rather than having an immutable background 
spacetime fixed a priori, in GR the spacetime geometry varies from one solution of the 
field equations to another and there are few constraints on allowed geometries.  Indeed, 
there are solutions of the field equations with exotic spacetime geometry quite different 
than that of Minkowski spacetime. 
 
GR adds a further obstacle to the analysis of time as a foliation of spacetime into instants.  
Consider again Alice and Bob, now in a general relativistic spacetime.  If their 
trajectories cross at a point and they have non-zero relative velocity, then --- just as in 
special relativity --- they will decompose spacetime distance into spatial and temporal 
distances differently, and their “instants” will be tilted with respect to each other.  But 
suppose we respond to the relativity of simultaneity by choosing one observer, say Alice, 
and privileging her simultaneity relation.  This would suffice to re-establish absolute time 
in special relativity, if there were legitimate grounds for granting the privilege.  In GR, 
however, there is a further question:  is it possible to extend Alice’s instants beyond her 
“local neighborhood,” effecting a global division of spacetime into space and time?  The 
question can be framed more precisely by considering the foliation into instants with 
respect to a family of observers, represented by a congruence of curves.  When is it 
possible to define a global foliation of spacetime into instants everywhere orthogonal to a 
given congruence?     
 
It is possible in the models that are now part of the standard model of cosmology, the 
FLRW (Friedman-Lemaître-Robertson-Walker) models. These models follow from 
requiring that the spacetime geometry is both homogeneous and isotropic.6  Imposing 
these symmetries implies that the models can be foliated by (globally extended) instants, 
leading to a well-defined notion of “cosmic time.”  There is also a naturally privileged 
congruence of observers:  the “fundamental observers” who remain at rest with respect to 
the matter in the model.  The worldlines of the fundamental observers are orthogonal to 



the instants, and a watch worn by a fundamental observer measures cosmic time elapsed. 
Einstein’s field equations reduce to a pair of equations governing the scale factor 

! 

R(t) , 
which represents the changing spatial distance between the fundamental observers as a 
function of cosmic time.  Cosmic time in the FLRW models resembles Newtonian 
absolute time:  for any two events in spacetime, the cosmic time elapsed between the 
events has a definite, observer-independent value. All of these properties lead to the 
conclusion that spacetime in the FLRW models breaks down into space and time much as 
in Newtonian spacetime, as Jeans and Eddington emphasized soon after the models were 
discovered. 
 
The existence of such a global foliation is, however, a contingent feature that is not 
guaranteed to hold by the dynamical laws.  This is vividly illustrated by a solution to 
Einstein’s field equations discovered by Gödel (1949).  This spacetime represents a 
“rotating universe,” in which matter is in a state of uniform rigid rotation. Due to this 
rotation it is not possible to define global “instants” as in the FLRW models.  To see why 
this is so, consider cutting through a collection of threads with a knife.  If the threads are 
parallel to each other, it is possible to cut through with the knife orthogonal to each and 
every thread, but this is impossible if the threads are twisted into a rope.  Analogously, 
the construction of global “instants” described above for the FLRW models can only be 
carried out if there is no “twist” or rotation of the congruence under consideration.7   
 
Furthermore, spacetimes that admit a global foliation into instants typically admit many 
different foliations, with no physical grounds to choose one as the “true” foliation. A 
unique foliation can be chosen in the FLRW models by exploiting their extreme 
symmetry. Rather than having a unique “cosmic time” as a replacement for Newtonian 
absolute time in a cosmological setting, we then have a variety of different possible 
notions of cosmic time and associated foliations.  These foliations lead to striking 
differences regarding, for example, whether the universe is finite or infinite in spatial 
extent. Again it seems natural to regard spacetime as the primary entity, which can be 
broken down into spatial sections evolving in a global cosmic time in a variety of 
inequivalent ways.8   
 
Cosmology thus recovers an analog of absolute time in specific models with a high 
degree of symmetry, a contingent feature.  Gödel, for one, argued that this is 
unsatisfactory: 

… if someone asserts that this absolute time [in the FLRW models] is 
lapsing, he accepts as a consequence that, whether or not an objective 
lapse of time exists … depends on the particular way in which matter and 
its motion are arranged in the world.  This is not a straightforward 
contradiction; nevertheless, a philosophical view leading to such 
consequences can hardly be considered as satisfactory. (Gödel 1949, 562) 

This dissatisfaction is hard to square with the main innovation of GR, namely that various 
(presumably) objective features of spacetime geometry depend on “how matter and its 
motion are arranged.”  
 



Even for those who do not share Gödel’s dissatisfaction, there is a further notable 
consequence.  Questions like those mentioned in the introduction – “how old is the 
universe?” – are only well-posed within a remarkably restricted class of spacetime 
models.  The questions are moored to the structure of the models fixed by strong 
symmetry assumptions, so to speak.  But in more realistic models describing a lumpy, 
bumpy “almost-FLRW” universe, these questions are cast adrift.  Below we will consider 
ways of formulating questions regarding the nature of time more broadly, so that they 
apply to a subset of spacetimes including the FLRW models but extending beyond them.  
There are a number of questions that can be posed in terms of invariant features of the 
spacetime geometry, although it is generally not possible to make a clean separation 
between spatial and temporal structure.  
 

II. The Beginning and End of Time 
 
Is the universe finite to the past? In the FLRW models this question is well-defined due to 
the unique foliation of spacetime into instants labeled by cosmic time.  Tracing backward 
from a particular instant taken to represent the universe “now,” the clock carried by any 
fundamental observer measures the cosmic time elapsed.  As one goes backward, the 
density of matter 
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"(t) increases without bound and the scale factor 

! 

R(t)  decreases 
towards zero.  This behavior reflects the basic fact that, in outmoded Newtonian 
language, gravity is a force of attraction.  Since 

! 

"(t) is positive the spacetime curvature 
is positive, leading to convergence of timelike geodesics.  Running backwards from 
“now,” the worldlines of fundamental observers converge and 
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R(t)  decreases; in turn, the 
density 

! 

"(t) increases as the matter and energy is compressed into a smaller volume.  In 
the FLRW models, 

! 

"(t)#$  and 

! 

R(t)"0 within a finite time, 

! 

T . A fundamental 
observer would regard this 
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T  as the “age of the universe,” or time elapsed since the Big 
Bang as measured by her clock. 
 
There is no “first instant” of time in this picture any more than there is a “first point” in 
an open interval of the real line.  Although the density increases without bound within a 
finite interval, there is no time in the FLRW models at which the density is infinite.  The 
curves representing fundamental observers do not “run into the Big Bang,” although they 
are incomplete in the sense of having finite length.  Talk of the “Big Bang” can be 
misleading as it suggests that there is a “singular region” within spacetime.  It would be 
inconsistent to treat singular points as points in spacetime, although one can study 
singularities by adding boundary points. (In this case, for example, one could add a 
boundary consisting of the point 
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"T  on each geodesic, much like adding boundary points 
to make an open interval closed.  But the resulting spacetime with boundary is not taken 
to represent physical spacetime directly.)    Singularities are perhaps best regarded as 
global properties of the spacetime reflected in features such as the existence of 
incomplete geodesics.9 In any case, as Torretti (1999) remarks, modern cosmology 
evades Kant’s first antinomy through mathematical subtlety:  there is no “first instant” or 
beginning in time, yet the universe does not have an infinite past.  
 
An alert reader will by now be wondering how much of this generalizes beyond the 
FLRW models.  In some solutions, such as Gödel’s described above, there is no way to 



meaningfully speak of cosmic time because there is no cosmic time function or foliation 
into instants.  There is, however, a clearly defined subspace of solutions for which cosmic 
time functions exist --- those that are “globally hyperbolic.”10  These solutions are 
topologically the product of space at an instant and the cosmic time, 
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" #$, although in 
general there is no way to privilege one of the many ways to decompose the spacetime.  
 
The conclusion that time is finite to the past holds, surprisingly, for spacetimes satisfying 
relatively weak assumptions. In the early days of relativistic cosmology Einstein and 
others regarded the singularity in the FLRW models as an artifact of the idealizations in 
these models.  Surely, they thought, giving a more realistic distribution of matter would 
undercut the conclusion that the universe has a finite age.  The singularity theorems 
established by Hawking, Penrose, and Geroch in the 60s show that they were wrong. 
Gravity leads to convergence of nearby geodesics, as described above, in the presence of 
“normal” matter.  For spacetimes satisfying a short list of physically motivated 
conditions, much weaker than the symmetries assumed in the FLRW models, this 
focusing property is sufficient to establish that there is a finite lower bound on time to the 
past.11 This statement exploits the fact that these models admit a global time function, and 
the universe is finite to the past if the range of this function is bounded below.  Unlike the 
FLRW models, there are many possible choices of a global time function and no grounds 
to distinguish one.  Some questions that can be answered directly in the FLRW models 
will be trickier in the general case. For example, the finite lower bound on cosmic time in 
the FLRW models has a fairly direct interpretation:  a clock ticking along the worldline 
of a fundamental observer would measure approximately 13.7 billion years elapsed from 
the big bang until now.  But in the more general class of models, a given global time 
function need not correspond directly to any similarly physically meaningful quantity.     
 
Turning to face the future, the recent discovery of dark energy has dramatically altered 
the conventional wisdom regarding the fate of the universe. Textbooks often say that 
“geometry is destiny” in the FLRW models, because the spatial geometry of the universe 
at a given instant determines the fate of the universe --- that is, the behavior of 
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R(t)  as 

! 

t "# .  The FLRW models divide into three classes of solutions depending on how the 
energy density compares to the “critical density,” defined as the density required to 
counteract exactly the initial expansion (such that 
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˙ R (t) "0 as 
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t "# ).  The “critical” 
case has spatial sections with flat (Euclidean) spatial geometry and expands forever, as 
does any FLRW model with density lower than the critical density.  In the latter case the 
sections have hyperbolic geometry and the sign of 
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˙ R (t)  does not change.  But for an 
FLRW model with greater than critical density, the gravitational attraction is sufficient to 
reverse the expansion, leading to a change in the sign of 
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˙ R (t)  and a “Big Crunch.”  The 
spatial sections of these models have spherical geometry.  Hence the spatial geometry 
determines the eventual fate of the universe.  Several observational programs have aimed 
to determine which of the three models best describes the actual universe by measuring 
the matter density.12 
 
But all of this is based on assumptions regarding the matter and energy contents of the 
universe that now seem untenable. “Normal” matter slows down the initial expansion of 
the universe, as one would expect of matter with positive energy density given the 



attractive nature of gravitation.  One can also introduce types of matter, however, that 
have the opposite effect --- that is, matter with negative energy density, which leads to 
repulsion and an acceleration of the expansion rate.  Two teams discovered that the 
expansion rate is accelerating in studies of high-redshift supernovae initially announced 
in 1998, for which they received the 2011 Nobel Prize.  This result is in agreement with 
several other lines of evidence in cosmology indicating that the best current models need 
to include a substantial amount of what is now called “dark energy.”   
 
Dark energy enters into one of equations for 
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R(t)  with the opposite sign as “normal” 
matter, leading to accelerated expansion, and it also does not dilute with expansion like 
normal matter.  Dark energy is thus expected to dominate the evolution of the universe as 
ordinary matter is diluted away by the expansion.  This undermines the usefulness of 
measuring the spatial geometry or current matter density for predicting the eventual fate 
of the universe, as the fate depends instead on dark energy and its density compared to 
that of normal matter.  Currently there are several different models of dark energy, which 
differ in treating it as a true “cosmological constant” or as a fluid with an equation of 
state that varies with cosmic time.   
 
These models lead to different scenarios for the far future of the universe, replacements 
for the 19th century “heat death.”  Lord Kelvin and his contemporaries argued that a 
Newtonian universe will eventually reach a uniform temperature, erasing the temperature 
differences needed for heat engines to extract work. The inclusion of dark energy in 
contemporary cosmological models leads to other possibilities, such as the “Big Chill,” 
so called because the temperature decreases with the expansion, leading to a modern 
version of heat death with an ever-decreasing, uniform temperature, and the “Big Rip,” in 
which 
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R(t)"# (“ripping” spacetime apart) within a finite time.       
 

III.  Through the Big Bang? 
 
What do our current theories imply regarding the beginning of time?  One influential line 
of thought aims to avoid a true beginning of time, by eliminating the big bang or 
extending through it.  First we will assess whether the grounds for abhorrence of 
singularities are compelling, before turning to the possibility of extending spacetime 
through a singularity.   
 
The singularity theorems establish that singularities occur generically in a class of 
physically reasonable spacetimes, including but more general than the FLRW models.  
Many physicists have followed Einstein’s lead in regarding the existence of singularities 
as a deep flaw of GR.  The singularity theorems make it harder to brush singularities 
under the rug, by treating them as artifacts of unrealistic assumptions. Rather than 
seeking other ways of avoiding singularities, perhaps we should reconsider the alleged 
problems that arise in spacetimes with a singularity (following, in particular, Earman 
1995)?  
 
Assessing one apparent problem requires disambiguation of different kinds of 
singularities.  Popular discussions of singularities misleadingly imply that their existence 



insures a failure of determinism; one pictures the kitchen sink, Ray Kurzweil, and 
everything in between emerging at random from a lawless region of spacetime.  The 
initial singularities in the FLRW models are, however, compatible with determinism in 
the sense that the laws and appropriate initial data fully fix the solution throughout 
spacetime.  There are different kinds of singularities (called “naked”) that do, however, 
pose a threat to determinism.  Penrose has conjectured that such singularities do not arise 
under physically reasonable conditions in GR, but this so-called “cosmic censorship” 
hypothesis remains unproven.  A proof would show that GR only allows singularities that 
do not lead to a conflict with determinism, with the “cosmic censor” effectively hiding 
the naked singularities from view.  Even without such a proof, it is clear that some 
singularities – such as the initial singularity in the FLRW models --- cannot be rejected 
on these grounds.  
 
A second line of argument takes singularities to be a sign of the incompleteness of GR.  
The theory proves its own undoing, so this argument goes, in the sense that it predicts 
singularities where the laws of GR themselves break down. This argument is also 
problematic.  It is misleading to think of singularities as if they are localized regions of 
the spacetime --- “the region where curvature is infinite” --- and, relatedly, it is 
misleading to think of other regions as “close to the singularity.”  There is then not a clear 
way of giving content to the rough idea that GR breaks down at, or as one approaches, a 
singularity.  While it is true that quantities appearing in the relevant equations would no 
longer be well-defined “at the singularity,” this does not establish incompleteness of GR.  
By hypothesis the spacetime itself does not include such singular regions, and one can 
still maintain that the laws of GR hold throughout spacetime.  
 
Although this discussion falls far short of a full assessment, Earman (1995)’s challenge to 
the conventional wisdom regarding the implications of singularities reveals that it is on 
shaky footing.  Regardless of one’s view about their other implications, singularities 
certainly spell the end of the story in classical GR.  Revisiting a debate from the early 
days of relativistic cosmology will help to make this point clear.  The debate concerned 
whether De Sitter spacetime, introduced by De Sitter in correspondence with Einstein, 
harbored a singularity.  The debate was resolved by showing that Einstein and De Sitter 
had been concerned with only a part of the full spacetime. There is no difficulty with 
extending the spacetime through what they had mistakenly called a singularity (and is 
now called an “event horizon”).  Singularities such as that in the FLRW models cannot be 
handled in the same way, however.  The scale factor and the density evolve such that no 
extension can preserve mathematical conditions typically imposed to insure that the field 
equations are well defined.13 Speculation regarding what happened “before the big bang” 
has to be based on something other than just classical GR.    
 
There are reasons other than a hope to indulge in such speculations for taking GR to be 
incomplete. Since it is a theory of gravity and sets aside the other fundamental forces it is 
incomplete, and it is incompatible with the theory describing the other fundamental 
forces, quantum field theory (QFT) (cf. Callender and Huggett 2001). The 
incompatibility of QFT and GR is not a pressing problem for most of the applications of 
each theory, due to the different length scales at which the strength of the different forces 



is relevant. However, the world is not cleanly divided into separate domains of 
applicability for QFT and GR, and neither theory offers a complete account of 
phenomena even within their intended domains. The early universe provides one example 
of such overlapping domains.  Developing a full account of physical processes in the 
early universe requires drawing on aspects of both GR and QFT.  The need for such an 
account does not derive from the existence of singularities per se. However, it is natural 
to expect that quantum effects will be important in the evolution of a system that would 
classically lead to a singularity. 
 
Claims regarding the fate of singularities in a successor theory to GR are, at this stage, 
not on entirely firm footing.  One approach to assessing the impact of quantum effects is 
to reconsider the status of the basic assumptions of the singularity theorems.  These 
theorems assume that the presence of matter leads to the convergence of neighboring 
geodesics.  In QFT, however, fields can have negative energy densities, which lead to a 
divergence of neighboring geodesics.  This opens up the possibility of exotic states of 
matter that would avoid full collapse to a singularity with a “bounce” due to this 
repulsive effect.   
 
But this approach takes GR to set the terms of the discussion, and perhaps the classical 
spacetime description fails more dramatically with respect to singularities.  Recent work 
drawing on different approaches to quantum gravity has led to very different accounts of 
the initial singularity.  Bojowald has argued, based on applying loop quantum gravity to 
cosmology, that spacetime will reach minimum finite size rather than reaching a 
singularity. Yet GR will fail to apply even approximately at this “bounce,” so in a sense 
there is still a “beginning” of classical spacetime on this account.  Turok and Steinhardt 
have pursued a program called ekpyrotic or cyclic cosmology, based on string theory, 
which exploits the possibility of extending through the initial singularity in a higher-
dimensional spacetime.14  On either approach, questions regarding the beginning of time 
and extensions through the initial singularity must be addressed based on a successor to 
GR.   
 

IV.  Operationalism 
 
We have above adopted a way of speaking common in relativity textbooks, taking 
spacetime geometry to be a mathematical structure defined over a collection of events.  
Brown (2005), however, has argued that this reflects a philosophical mistake; on his 
view, spacetime geometry should be regarded instead as representing salient properties of 
the dynamics governing matter.  Although the label is not entirely appropriate for 
Brown’s position, an operationalist would likewise seek an observable manifestation of 
the geometrical quantities ascribed to spacetime.  We will not tackle the general dispute 
directly here, instead considering implications of cosmology. What does time mean in the 
very early universe, or in the far future, where there may not be physical systems that 
could possibly function as clocks (cf. Rugh and Zinkernagel 2010)? 
 
Suppose that the matter filling spacetime is governed by conformally invariant dynamics.  
A theory is conformally invariant if solutions can be generated from a given solution by 



transformations that “re-scale” spatial and temporal distances.  Under such a 
transformation the light cone structure remains invariant --- i.e., if two points 
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p,q  can be 
connected by a light ray in the given solution, this will also be true in solutions generated 
by a conformal transformation.  Spatial and temporal distances, however, generally vary 
from one solution to another.  A theory with dynamical equations that are conformally 
invariant treats these solutions as equivalent.  There is then no basis to claim that the 
proper time elapsed along a given worldline is given by, say, 1 second rather than 1.3 
hours. (Similarly, there will be no basis for measurements of length.) In such a situation 
the spacetime metric does not have the full physical significance usually attributed to it --
- the metric says more about the spacetime geometry than can be revealed through 
measurements. 
 
Conventional accounts of the early universe describe it as going through a series of 
symmetry-breaking phase transitions that lead to the physical distinctions between the 
strong, weak, and electromagnetic forces, and the generation of particle masses. On some 
accounts, prior to these phase transitions the laws are approximately conformally 
invariant.  Penrose (2010) has also argued that in the far future the universe may be 
governed by conformally invariant dynamics:  all matter will eventually decay, black 
holes will evaporate, and so on, leading to a universe filled with only electromagnetic and 
gravitational radiation.15  (This leads to his speculative conformal cyclic cosmology, 
based on identifying the initial singularity with the future singularity, leading to a cyclic 
model.)  If there are cosmological regimes described by conformally invariant dynamics, 
then GR gives a richer description of spacetime geometry than the matter theory 
demands. In such regimes GR would have the flaw of introducing asymmetries that are 
not inherent in the phenomenon.     
 
Regardless of one’s philosophical approach, this ought to be recognizable as a problem.  
On a spacetime approach, a match between the dynamical symmetries of the matter 
theory and the spacetime symmetries is typically treated as a condition of adequacy.  On 
Brown’s approach, the spacetime symmetries just are the dynamical symmetries 
(misleadingly characterized), so in a case like this the spacetime geometry would not 
have its usual physical significance.  Considerations of conformally invariant dynamics 
may force physicists to revise the spacetime geometry ascribed to the universe in 
different regimes.  Yet it is hard to see how these cosmological considerations could 
force a resolution of philosophical debates regarding the status of spacetime geometry. 
 

V.  Time’s Arrow 
 
At various points above we assumed a distinction between the past and future, even 
though there is no basis for it in the austere conception of time outlined in § I.  Finding a 
physical basis for this familiar aspect of our phenomenological experience of time has 
been the subject of a large literature.16 Boltzmann’s original proposals to solve the 
“problem of time’s arrow,” as it is now called, invoked speculative, obscure cosmological 
ideas, and in the ensuing 150 years of debate cosmology has continued to play a central 
role.  After first formulating the problem, we will briefly consider the consensus view 
regarding how cosmology may contribute to a solution.  We will then turn to the 



implications of cosmology for the arrows of time associated with electromagnetism and 
gravitation.   
 
The problem arises due to an apparent conflict between the time-reversal invariance of 
fundamental laws of physics and the temporal asymmetry of observed phenomena.  
Consider the history of a particular system, as described by some physical theory, to be 
an assignment of an “instantaneous state” of the system over some time interval (that is, 
  

! 

t a D(t) where 

! 

D(t) is the state at time 

! 

t ) that is compatible with the laws of that theory.  
For example, a history of Bobby Thomson’s 1951 home run to clinch the pennant would 
specify the state of the baseball --- in the simplest case, the position and velocity of the 
center of mass --- over the interval from, say, the ball leaving Branca’s hand to its 
destination in the left-field stands.  A theory is time reversal invariant (TRI) if the “time-
reversed history” (  

! 

taTD(t) ) is also allowed. Here 

! 

T  operates on the history in two ways:  
it reverses the time order of instantaneous states and also “flips” the sign of some 
quantities in the instantaneous states. (Representing the “flip” as a reversal operator 

! 

R, 

! 

TD(t) =R D("t) .)  Thomson’s home run in reverse would be a history with states in 
reverse sequence, where the velocity in each state has the opposite sign.  The ball would 
fly towards Thomson’s bat rather than toward the stands.17  This trajectory would also be 
a possible solution of the equations governing the motion of projectiles, given that the 
relevant theory is, like nearly all fundamental theories, TRI.18  Yet obviously we never 
see a baseball fly out of the stands, ricochet off the bat, and, with elegantly arranged 
speed and spin, shoot back into the pitcher’s hand.   
 
Time-asymmetric patterns of succession are a pervasive part of our experience. We can 
all readily distinguish histories that represent the kind of progression of states we 
ordinarily experience from their time-reversed counterparts, which are usually as odd as a 
home-run-in-reverse.  This leads to a problem if we assume that every aspect of our 
phenomenological experience of time must be grounded in the physical laws.  For the 
laws of a TRI theory are apparently too permissive, providing no physical basis for 
drawing this distinction.  Note, however, that this way of formulating the problem 
presumes that the physical theory provides a complete account of the nature of time, such 
that its absence from the laws undercuts this aspect of our phenomenal experience.  
Furthermore, as Earman (1974) emphasized, generally one does not expect a particular 
history to reflect the symmetries of the laws; it is no surprise that a particular history can 
be time-asymmetric even though the laws are TRI.  There needs to be further argument 
that the temporal asymmetry of experience should be explained in some deeper sense --- 
for example, because this aspect of experience is too fundamental to be treated as a 
contingent feature of a particular history.  
 
The modern debate regarding time’s arrow in statistical mechanics began with 
Boltzmann’s claim to have derived time-asymmetric behavior from TRI laws. Boltzmann 
argued that a system initially in a non-equilibrium state would evolve towards 
equilibrium at later times. Consider, for example, a thermally isolated box at room 
temperature enclosing a warm cup of coffee. Supposing that at 9:00 the cup is warm, 
Boltzmann’s argument implies that it should be cooler when retrieved at 9:30, as the 
system evolves towards equilibrium, in which the cup and air in the box have the same 



temperature. Given the TRI of the laws used in the derivation, however, it follows from 
the same argument that evolving backwards from the chosen state should also lead 
toward an equilibrium state.  But this is incompatible with experience:  it implies that the 
warm cup of coffee at 9:00 evolved from a cooler state at 8:30.  Boltzmann claimed to 
have ruled out the second type of evolution but it was initially puzzling how the trick was 
done.  After objections from Boltzmann’s contemporaries, it eventually became clear that 
the derivation depended on smuggling in a subtle asymmetry in the boundary 
conditions.19 
 
In defense of asymmetric boundary conditions Boltzmann shifted from consideration of 
isolated systems to the state of the universe as a whole.  The second problematic 
evolution described above can be ruled out by assuming that the box and coffee cup were 
in a state further from equilibrium at 8:30 than at 9:00.  But what about the state of the 
cup at 8:15? Pursuing this line of thought leads to ever-earlier states, and eventually to a 
postulate regarding the initial state.  Boltzmann suggested two possible justifications of 
the choice of a far-from-equilibrium “initial state”:20  (1) on global scales the universe is 
in an equilibrium state, but the box (and everything else in the observable universe) is the 
result of an enormously improbable fluctuation to a far-from-equilibrium state, or (2) the 
universe began in a far-from-equilibrium state. Either case yields the desired conclusion:  
evolution since the initial state would be towards equilibrium, allowing for home runs but 
not their time reversed counterparts.  Although Boltzmann preferred the first option, 
modern cosmology apparently lends support to the second proposal --- with the far-from-
equilibrium initial state taken to hold “at the Big Bang.” 
 
This proposal faces an immediate objection:  the state of the early universe seems close to 
an equilibrium state, rather than far from it, given (for example) the uniform geometry at 
early times revealed by the uniform temperature of the cosmic background radiation. The 
relevant question, however, is whether the state with all the relevant degrees of freedom -
-- including matter, radiation, and the gravitational field --- is close to an equilibrium 
state. Penrose, in particular, has argued that when gravity is included the early universe 
should be regarded as very far from equilibrium.  Since gravity is a force of attraction, 
systems closer to equilibrium should be clumpier, with the equilibrium state given by 
“maximal clumpiness” – namely, a black hole.  Hence the uniformity of the early 
universe is compatible with treating it as far-from-equilibrium. This line of argument 
qualifies as something like conventional wisdom, sometimes called the “Past Hypothesis” 
(following Albert 2000).  The PH holds that modern cosmology provides exactly the sort 
of far-from-equilibrium initial state required for Boltzmann’s solution to the problem of 
time’s arrow. 
 
We only have space here to highlight two critical points regarding this proposal, which is 
currently the subject of vigorous debate in foundations of physics.  First, the line of 
thought described above regarding equilibrium states for gravitational systems is 
heuristic, at best.  Difficulties with applying statistical mechanics to gravity arise even in 
Newtonian gravity and are amplified in GR (see Callender 2008).  And in assessing ever-
earlier states, the appropriate physical theory to employ to determine the equilibrium 
states --- namely, quantum gravity --- has not yet been formulated.  It is unclear yet 



whether the open problems in applying statistical mechanics to gravity undercut the 
conventional wisdom regarding the PH. 
 
Second, even if we assume that solutions to the open problems will buttress the 
conventional wisdom, it is not clear that the PH resolves the original problem.  Shifting 
from specifying local boundary conditions on subsystems to the boundary condition of 
the whole shebang only solves the original problem if the PH appropriately constrains the 
boundary conditions of the subsystems.  Does the PH imply that the initial states of 
subsystems of the universe, such as our coffee cup, will (almost always) be far from 
equilibrium, as it must to account for the asymmetries of experience?  Consider whether a 
“global” system consisting of, say, the observed universe can evolve towards equilibrium 
while isolated subsystems display anti-thermodynamic behavior.  There is a lot of work 
to be done in ruling out anti-thermodynamic behavior of subsystems, and it is doubtful 
whether the PH itself provides sufficient grounds for doing so.21  
 
Cosmology also has implications for the temporal asymmetry observed in 
electromagnetic phenomena.  Rather than Thomson’s home run, consider the antenna 
broadcasting news of the “shot heard round the world” and consider the radiation emitted 
from the antenna --- some of which is absorbed, and some of which escapes into the vast 
reaches of space.  The time reverse of this process describes radiation coming in from the 
absorbers and space, elegantly contrived to converge on the antenna and excite 
coordinated oscillations among its electrons.  Insofar as the radio broadcast involves 
collective phenomena there may not be a clear contrast between an “electromagnetic” and 
“thermodynamic” arrow.  But restricting attention to a single electron and the 
electromagnetic field may suffice to isolate an electromagnetic arrow, similar in nature to 
“arrows” associated with other kinds of wave propagation.  Just as we observe stones 
producing surface waves in water but not the time reverse, we observe sources such as an 
electron decelerating and emitting radiation, but not the time reverse. 
 
The posit comparable to the PH in this case is called the Sommerfeld radiation condition, 
which prohibits “source-free radiation” such as that involved in the “anti-broadcast.”  
Any given solution of Maxwell’s equation can be decomposed, according to the Kirchoff 
representation theorem, into terms representing the contribution from sources within a 
given volume of spacetime and radiation registered on the boundary of that region.  
Consider the retarded representation, which takes the field at a point to be fixed by the 
sources where they intersect with the past light cone of the point and a surface term 
representing incoming radiation where the light cone is cut off at some specified earlier 
time.22   The Sommerfeld radiation condition requires, in the limit as the volume of the 
spacetime region goes to infinity, that there is no incoming radiation registered on the 
boundary of the region.  This is usually justified as a way of implementing the idea that 
radiation must have sources, as it rules out source-free incoming radiation.     
 
This way of formulating a temporal asymmetry for electromagnetism does not extend to 
all cosmological models.23 This is a consequence of the existence of particle horizons in 
models with a spacelike singularity.  Roughly speaking, the particle horizon delimits the 
region from which signals traveling at or below the speed of light can reach a given 



point.24 The Sommerfeld radiation condition cannot be applied in this context because the 
field at a point still depends on charges lying beyond the horizon.  Explicitly, consider a 
charged particle whose worldline 

! 

" #  never intersects the past lightcone at a point 

! 

p  (see 
figure 2).  Although 

! 

" #  is beyond 

! 

p’s horizon, since two of Maxwell’s field equations are 
elliptic equations constraining the value of the electromagnetic field on a spacelike 
surface, the presence of 

! 

" #  will be registered in the field value at 

! 

p .      
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" #  is beyond the horizon (the distance dh) for a particle traveling 
along the curve 
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" , at point 
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p .   
 



There is a natural analog of the Sommerfeld radiation condition in the case of gravitation: 
Penrose (1979)’s “Weyl curvature hypothesis,” according to which the Weyl curvature  
goes to zero (in an way that can be precisely specified) as 

! 

t "0.  The Weyl curvature 
tensor represents the “free gravitational field,” and this hypothesis requires that there is 
no source-free gravitational radiation.  As with the Sommerfeld radiation condition, 
accepting the hypothesis explicitly breaks time symmetry.   
 
 VI.  Conclusion 
 
It is striking how far cosmology has come in clarifying the empirical implications of 
long-standing questions about the nature of time.  One can acknowledge this as important 
progress without accepting a stronger claim, that the only meaningful questions about 
time are the ones that can be posed in the precise language of relativistic cosmology.  Yet 
these developments within physics have shown that many seemingly clear questions rest 
on subtle conceptual confusions.  As a way of summarizing some of the discussion 
above, let me emphasize two general themes regarding the transformation that our initial 
questions have undergone.  First, questions apparently about “time” are really questions 
about spacetime in relativity, and spatial and temporal structure can be cleanly separated 
only in quite special circumstances.  Since spacetime geometry depends on how matter 
and motion are arranged in GR, questions about the nature of time are transformed into 
questions about the matter filling the universe and how it moves.  Second, cosmology 
brings out an interesting interplay between local and global features of time.  A globally 
defined cosmic time function generally doesn’t correspond to the time elapsed on an 
observer’s wristwatch.  More significantly, features of cosmological models such as 
singularities have resisted local analysis.  And the assessment of the past hypothesis as an 
explanation of observed temporal asymmetries depends on establishing that a global 
claim regarding the initial state constrains appropriately the initial states of subsystems of 
the universe.  Finally, it is clear that the third act in the ongoing story of the development 
of the concept of time, which will take up where the account of section I left off, will 
involve significant further transformations.  Especially with regard to questions regarding 
the big bang and early universe, the concepts of spacetime geometry central to GR are not 
expected to apply.  Philosophers should welcome the challenging work that will come 
with clarifying the nature of time in successor theories.    
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1 More precisely, the “time line” is an affine space: it lacks a preferred origin and other 
algebraic structures associated with !. 
2 The set includes inertial observers; an observer moving uniformly (at constant velocity) 
with respect to a given inertial observer will also be an inertial observer. See, e.g., Belot 
(2001) or DiSalle (2006) for further discussion of Galilean relativity, inertial frames, and 
the spacetime geometry appropriate for Newtonian theory.   
3 See Janis (2010) for a survey of the conventionality of simultaneity, a topic that we are 
setting aside.    
4 See, for example, Malament (2007) for a concise introduction to general relativity for 
philosophers. 
5 Note that from the standpoint of general relativity it is misleading to speak of 
“gravitational force” or “acceleration due to gravity”:  gravity is not a force that causes a 
body to accelerate and depart from an inertial trajectory.  The effects of gravity are 
included in defining freely falling trajectories (the replacement for inertial trajectories), 
and non-zero net non-gravitational force yields acceleration and departure from such 
trajectories.  
6 Roughly speaking, homogeneity requires that at a given moment of cosmic time every 
spatial point “looks the same,” and isotropy holds if there are no geometrically preferred 
spatial directions.  Assuming that the models are simply connected, these requirements 
imply that the models are topologically 

! 

" #$. 
7 The analogy is borrowed from Malament (1995), which is an excellent source for 
further discussion of Gödel’s arguments concerning the nature of time and the properties 
of the model he discovered.  Gödel’s model has the further property that there are no 
global slices, which follows from the fact that it is topologically 

! 

"4  and compact. 
8This is not to be confused with the relativity of simultaneity familiar from special 
relativity; the breakdown isn’t observer dependent, in that there is not a naturally 
preferred way to choose a foliation based on observer’s state of motion. Furthermore, the 
hypersurfaces of simultaneity for an observer do not in general match the surfaces of 
constant cosmic time. 
9 This suggestion is elaborated and defended by Curiel (1999); which is in part a response 
to Earman (1995)’s discussion of singularities. 
10 A slice of a spacetime (an achronal, edgeless surface) is said to be a Cauchy surface if 
its domain of dependence is the entire spacetime.  The domain of dependence of a slice 
consists of the points in spacetime such that all (past or future) inextendible causal curves 
through the point intersect the slice.  In a globally hyperbolic spacetime, initial data for 



                                                                                                                                            
the gravitational field specified on a Cauchy surface determine the full solution (up to 
diffeomorphism). 
11 Given that the bound can be formulated in terms of the length of a timelike geodesic 
going backward from a particular instant, this conclusion does not depend on singling out 
a unique cosmic time function. 
12 Add some detail here, e.g. Sandage’s attempts to measure the deceleration parameter.   
13 A given spacetime is an extension of a second spacetime if the latter can be mapped 
into a subset of the former, while preserving relevant metrical structure. A spacetime is 
said to be maximal if there are no proper extensions of it.  Both are relative to a choice of 
what mathematical conditions to impose; one can loosen these and allow more 
extensions.   
14 For popular level discussions of these two approaches, with references to pursue 
further, see Bojowald (2011) and Steinhardt and Turok (2007). 
15 Penrose assumes that the universe contains dark energy and asymptotically approaches 
a De Sitter solution in the far future.  Electromagnetic and gravitational radiation are both 
massless fields governed by conformally invariant dynamics, but Penrose’s proposal has 
to assume that electrons also decay, somehow, in order for the dynamics to be fully 
conformally invariant.     
16 See, in particular, Callender (2011) for a clear survey of these debates. 
17 Albert (2000) defends the heretical position that various quantities typically taken to be 
“flipped” by the time-reversal operation should not be, based on considerations regarding 
the “logical or conceptual” dependence of the quantities on time.  Velocity is flipped 
because he takes it to be non-fundamental quantity that is defined as the time derivative 
of position.  But he argues, for example that in electromagnetism the magnetic field 
should not change sign under time reversal, with the consequence that electromagnetism 
fails to be “Albert-TRI.” Other physical theories judged to by TRI by everyone else are 
also not Albert-TRI.  However, Albert’s treatment of electromagnetism fails to 
acknowledge the fundamental contrast between electric and magnetic fields --- the former 
are polar vector fields, whereas the latter are axial vector fields, which change sign under 
change of parity or time reversal.  See Earman (2002) and Malament (2004) for 
discussion and defense of the conventional definition of TRI.  
18 There is evidence from the decay of neutral K mesons, combined with the CPT 
theorem, for the failure of time reversal invariance in the theory describing the weak 
interaction. (See Sachs 1987 for a discussion.)  The existence of non-TRI laws poses a 
challenge to the position that time is symmetric, but such laws are not relevant to the 
current debate if, as is quite plausible, the physical laws relevant to describing the 
baseball’s trajectory are TRI.   
19 See Uffink (2007) for a masterful recent discussion of the debate among Boltzmann 
and his contemporaries, and Sklar (1993) for an earlier survey of issues in statistical 
mechanics.  In the text I have avoided introducing the quantity “entropy” for ease of 
exposition; in terms of the Boltzmann entropy for a state, the debate regards why entropy 
increases with time for a thermally isolated system.  
20 “Initial state” is a misleading term as there is not a “first moment” at which the 
appropriate state is specified, but it suffices for this discussion to consider a state 



                                                                                                                                            
specified after the initial fluctuation to a far-from equilibrium state (option 1) or in the 
early universe (option 2).  
21 See, in particular, Winsberg (2004) for an argument that ruling out the possibility of 
anti-thermodynamic subsystems requires an implausible principle in addition to the PH. 
22 One can instead consider the advanced representation, and reverse all temporal 
language in the rest of the paragraph (past goes to future, sources goes to sinks, etc.).  
Choosing the formulation of the Sommerfeld radiation condition described in the text as 
an explicit law of electromagnetism explicitly breaks TRI. (One can similarly formulate a 
“no sink-free outgoing radiation condition” that also breaks TRI.) 
23See Ellis and Sciama (1972) for a clear discussion of this issue. 
24See Ellis and Rothman (1993) for an introduction to horizons in relativistic cosmology.  


